Spanning Trees of Bounded Degree Graphs
نویسنده
چکیده
We consider lower bounds on the number of spanning trees of connected graphs with degree bounded by d. The question is of interest because such bounds may improve the analysis of the improvement produced by memorisation in the runtime of exponential algorithms. The value of interest is the constant βd such that all connected graphs with degree bound ed by d have at least β d spanning trees where μ is the cyclomatic number or excess of the graph, namely m− n+ 1. We conjecture that βd is achieved by the complete graph Kd+1 but we have not proved this for any d greater than 3. We give weaker lower bounds on βd for d ≤ 11. First we establish lower bounds on the factor by which the number of spanning trees is multiplied when one new vertex is added to an existing graph so that the new vertex has degree c and the maximum degree of the resulting graph is at most d. In all the cases analysed, this lower bound fc,d is attained when the graph before the addition wa s a complete graph of order d but we have not proved this in general. Next we show that, for any cut of size c cutting a graph G of degree bounded by d into two connected components G1 and G2, the number of spanning trees of G is at least the product of this number for G1 and G2 multiplied by the same factor fc,d. Finally we examine the process of repeatedly cutting a graph until no edges remain. The number of spanning trees is at least the product of the multipliers associated with all the cuts. Some obvious constraints on the number of cuts of each size give linear constraints on the normalised numbers of cuts of each size which are then used to lower bound βd by the solution of a linear program. The lower bound obtained is significantly improved by imposing a rule that, at each stage, a cut of the minimum available size is chosen and adding some new constraints implied by this rule.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملConnectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
In this paper, we present some new results describing connections between the spectrum of a regular graph and its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.
متن کاملLarge Bounded Degree Trees in Expanding Graphs
A remarkable result of Friedman and Pippenger [4] gives a sufficient condition on the expansion properties of a graph to contain all small trees with bounded maximum degree. Haxell [5] showed that under slightly stronger assumptions on the expansion rate, their technique allows one to find arbitrarily large trees with bounded maximum degree. Using a slightly weaker version of Haxell’s result we...
متن کاملHomeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees
A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...
متن کاملDegree Bounded Spanning Trees
In this paper, we give a sufficient condition for a graph to have a degree bounded spanning tree. Let n ≥ 1, k ≥ 3, c ≥ 0 and G be an n-connected graph. Suppose that for every independent set S ⊆ V(G) of cardinality n(k − 1) + c + 2, there exists a vertex set X ⊆ S of cardinality k such that the degree sum of vertices in X is at least |V(G)| − c − 1. Then G has a spanning tree T with maximum de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0902.2166 شماره
صفحات -
تاریخ انتشار 2008